Comparison between two Gas-Liquid Flow Impellers: Poseidon (IFP design) and with Phase Velocity Control (PVC)

	Impeller Poseidon – Ip1	Phase Velocity Control – Ip2 (1)
Main	Helico axial – Strictly axial	Helico axial - Slightly radial with two
		concavities at cover (concave to
	Large blade length (Lb1) and	convex: Inlet to outlet) – (2)
geometrical	large blade curvature radius (Rb1)	Medium blade length (Lb2) and
features		medium blade curv. Radius (Rb2)
	Meridional hub shape: Concave	Meridional hub shape: Determined
	to reinforce Coriolis force effect (3)	for optimum SP flow performance
Design & Principle of operation	Minimum acceleration in a 3D	Relaxation in acceleration criteria.
	orthogonal system – Minimum	Liquid accelerated from impeller
	dependent on energy transfer.	entrance (use of radial acceleration)
	TARGET: To permit flow mixing	TARGET: To create phase separation
	beyond natural mixing and limit	with phase velocity control along
	separation force effect	cover (fraction of radial acceleration)
Flow	Flow mixing maintained at Low	Natural flow mixing at Very Low
	GLVR - GLVR1 limit dependent on	GLVR. Beyond GLVR2 (<glvr1), phase<="" td=""></glvr1),>
behaviour	GLDR. Beyond GLVR1, phase	separation occurs with VI accelerated
and	separation with VI significantly	from impeller entrance and VI # Vg
characteristics	smaller than Vg inducing large	from impeller mid axial position to
	interfacial and other losses	exit
SP and TP losses	Large impeller friction losses	Less imp. friction losses (Lb2 <lb1)< td=""></lb1)<>
	Large impeller interfacial losses	Less impeller interfacial losses and
	and entrance losses at diffuser	Less entrance losses at diffuser (Same
	(Different L & G incidence angle)	L & G incidence angle)
SP and TP Hydraulic performance	Medium SP Efficiency	Larger SP Efficiency (Lb2 <lb1)< td=""></lb1)<>
	Medium SP Pressure Coefficient	Larger SP Pressure Coef. (Rb2 <rb1)< td=""></rb1)<>
	Low TP Efficacy	Larger TP efficacy
	Low TP Efficiency	Medium to large TP Efficiency
	Low TP Pressure Coefficient	Medium to large TP Pressure Coef.
	Medium inlet volume flow (Qin)	Larger Qin (larger inlet blade angle)
For a better	To control secondary flow within	To initiate phase velocity control right
performance	impeller (Flow mixing): Difficult !	from impeller entrance: New diffuser
Abbraviations Li Liquid C: Cas Lb: Plada Longth Phy Plada Curvatura Padius CIVP: Cas		

<u>Abbreviations</u> – L: Liquid, G: Gas, Lb: Blade Length, Rb: Blade Curvature Radius, GLVR: Gas Liquid Volume Ratio, GLDR: Gas Liquid Density Ratio, VI: Liquid velocity, Vg: Gas velocity, SP: Single Phase, TP: Two Phase.

Note 1: See drawing 8 of patent; **Note 2**: A helico axial impeller including a radial cover with a single concavity cannot provide satisfactory performance as the liquid phase is continuously accelerated (VI<Vg in 1st impeller section and VI>Vg in 2nd section) therefore **VI=Vg is met only at a single point** (large interfacial losses outside that point). **Note 3**: See page 11 of patent document